Scanning the membrane-bound conformation of helix 1 in the colicin E1 channel domain by site-directed fluorescence labeling.

نویسندگان

  • Abdiwahab A Musse
  • Jie Wang
  • Gladys P Deleon
  • Gerry A Prentice
  • Erwin London
  • A Rod Merrill
چکیده

Helix 1 of the membrane-associated closed state of the colicin E1 channel domain was studied by site-directed fluorescence labeling where bimane was covalently attached to a single cysteine residue in each mutant protein. A number of fluorescence properties of the tethered bimane fluorophore were measured in the membrane-bound state of the channel domain, including fluorescence emission maximum, fluorescence quantum yield, fluorescence anisotropy, membrane bilayer penetration depth, surface accessibility, and apparent polarity. The data show that helix 1 is an amphipathic alpha-helix that is situated parallel to the membrane surface. A least squares fit of the various data sets to a harmonic function indicated that the periodicity and angular frequency for helix 1 are typical for an amphipathic alpha-helix (3.7 +/- 0.1 residues per turn and 97 +/- 3.0 degrees, respectively) that is partially bathing into the membrane bilayer. Dual fluorescence quencher analysis also revealed that helix 1 is peripherally membrane-associated, with one face of the helix dipping into the lipid bilayer and the other face projecting toward the solvent. Finally, our data suggest that the helical boundaries of helix 1, at least at the C-terminal region, remain unaffected upon binding to the surface of the membrane in support of a toroidal pore model for this colicin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array.

Atomic level structures have been determined for the soluble forms of several colicins and toxins, but the structural changes that occur after membrane binding have not been well characterized. Changes occurring in the transition from the soluble to membrane-bound state of the C-terminal 190-residue channel polypeptide of colicin E1 (P190) bound to anionic membranes are described. In the membra...

متن کامل

Adventures in Membrane Protein Topology

The molecular aggregate size of the closed state of the colicin E1 channel was determined by fluorescence resonance energy transfer experiments involving a fluorescence donor (three tryptophans, wild-type protein) and a fluorescence acceptor (5-(((acetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (AEDANS), Trp-deficient protein). There was no evidence of energy transfer between the donor and ...

متن کامل

Folded state of the integral membrane colicin E1 immunity protein in solvents of mixed polarity.

The colicin E1 immunity protein (ImmE1), a 13.2-kDa hydrophobic integral membrane protein localized in the Escherichia coli cytoplasmic membrane, protects the cell from the lethal, channel-forming activity of the bacteriocin, colicin E1. Utilizing its solubility in organic solvents, ImmE1 was purified by 1-butanol extraction of isolated membranes, followed by gel filtration and ion-exchange chr...

متن کامل

Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding. A site-directed spin labeling study.

The BCL-2 family proteins constitute a critical control point in apoptosis. BCL-2 family proteins display structural homology to channel-forming bacterial toxins, such as colicins, transmembrane domain of diphtheria toxin, and the N-terminal domain of delta-endotoxin. By analogy, it has been hypothesized the BCL-2 family proteins would unfold and insert into the lipid bilayer upon membrane asso...

متن کامل

The molecular basis for the pH-activation mechanism in the channel-forming bacterial colicin E1.

The in vitro activity of the channel-forming bacteriocins such as colicin E1 in model membranes requires the specific activation of the protein by an acidic environment in the presence of a membrane potential. Acid activation of the C-terminal domain results in the formation of an insertion-competent intermediate with an enhanced ability to penetrate and perforate cell membranes. We report nove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 2  شماره 

صفحات  -

تاریخ انتشار 2006